WILLIAM LETTIERI

REAI

Task: Design and develop a document analysis tool that automates the extraction and classification of key data contained in lease documents, thereby enhancing the efficiency and accuracy of real property management tasks. Secondly, implement a chat bot to retrieve information from the documents to efficiently answer user questions.

Method: Utilized Python (Flask) for internal API functionality and Amazon Textract for robust PDF/OCR processing, specifically focusing on extraction of relevant data in contracts. Employed techniques like regular expressions for pattern matching and LLM-based document classification, document summarization, and extraction of critical values and legal clauses. Integrated machine learning models to generate embeddings of assembled data to facilitate semantic search capabilities for retrieval. 

Through implementation of HNSW indexing, cosine similarity and re-ranking search features, the OpenAI function-executing GPT bot rapidly searches and retrieves relevant information based on the context of the conversation and user question. Llama Indexing techniques allow searching across many documents without hallucination. 

Result: Developed a streamlined, web-based interface for property managers and real estate professionals to upload lease and amendment documents, automatically extract pertinent information for abstraction, and store it in a structured PostgreSQL database. 

The system’s embeddings-powered intelligent search functionality enables users to quickly find specific lease terms or clauses across multiple documents and generate useful reports. This  in conjunction with the assistant of the chat module significantly reduces manual review time and improves decision-making processes. This, in turn, significantly decreases administrative and derivative costs associated with human personnel. 

  

Market Prophet

Task:  Develop an integrated web-based toolset designed specifically for hedge funds, providing comprehensive insights into financial market trends, with a focus on the S&P 500.

Method:  Implemented advanced data visualization techniques using Plotly charts, which included detailed volume profiles, put-to-call volume ratios, and historical analysis of seasonal patterns. Special attention was given to differentiate between election-centric and non-election-centric market cycles, ensuring a broad range of analytical tools.

Result:  Leveraged the flexibility and efficiency of WordPress for rapid prototyping and its robust built-in features, optimizing the site for user experience. Integrated JavaScript effectively to enable dynamic, real-time updates of charts without the need for page refreshes, enhancing the toolset’s responsiveness and utility for real-time market analysis.

Technical Indicator Charts

Seasonality Charts

Technical Indicators

Task: Construct advanced Trading View scripts, integrating the MEJT trading system into a comprehensive visual and alert-based tool. This project aimed to assist traders in identifying optimum trading opportunities in real-time, with a particular focus on clear visual representations of the system’s indicators.

Method: Utilized the scripting capabilities of Trading View’s Pine Script to translate the MEJT system into a set of visual tools and alerts. The script includes a customizable dashboard that displays key indicators such as trend lines, support and resistance levels, and potential trade setups based on MEJT principles. Special attention was given to ensuring the script’s real-time responsiveness and accuracy in different market conditions.

Result: Achieved a highly interactive and user-friendly interface, enabling traders to visually track and analyze market trends in line with the MEJT system. The integration of real-time alerts ensures timely decision-making, enhancing the tool’s practicality for day traders and short-term investors. The script’s adaptability and integration with the Trading View platform have made it a valuable tool for traders seeking to leverage the MEJT system for effective market analysis and trading strategies.

Technical Indicators

Chat Stream Fade

Task:  Produce a fade-in text effect that dynamically displays streaming Large Language Model (LLM) chat responses with a visually appealing entrance.
[ as seen on Perplexity.ai ]

Method:  Employed NextJS for robust frontend integration with OpenAI’s API, enhanced with TailwindCSS for sleek styling. Developed a customized fading effect to seamlessly blend incoming content.

Result:  Implementation maintained the original API response speed with negligible load cost. Entrance effect significantly enhanced user experience, creating a perception of hyper-responsiveness and a visually smooth interface, as evidenced by user feedback and engagement metrics.